Nuprl Lemma : tagged+_wf
∀[T,B:Type]. ∀[z:Atom].  (T |+ z:B ∈ Type)
Proof
Definitions occuring in Statement : 
tagged+: T |+ z:B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tagged+: T |+ z:B
Lemmas referenced : 
isect2_wf, 
tag-case_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
atomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T,B:Type].  \mforall{}[z:Atom].    (T  |+  z:B  \mmember{}  Type)
Date html generated:
2016_05_15-PM-06_45_59
Last ObjectModification:
2015_12_27-AM-11_48_24
Theory : general
Home
Index