Nuprl Lemma : fulpRunType-subtype

[M:Type ─→ Type]. (fulpRunType(T.M[T]) ⊆pRunType(T.M[T]))


Proof




Definitions occuring in Statement :  pRunType: pRunType(T.M[T]) fulpRunType: fulpRunType(T.M[T]) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type
Lemmas :  subtype_rel_dep_function nat_wf Id_wf pMsg_wf unit_wf2 System_wf top_wf ldag_wf pInTransit_wf subtype_rel_product list_wf component_wf subtype_rel_self

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  (fulpRunType(T.M[T])  \msubseteq{}r  pRunType(T.M[T]))



Date html generated: 2015_07_23-AM-11_09_29
Last ObjectModification: 2015_01_29-AM-00_08_38

Home Index