Nuprl Lemma : fulpRunType-subtype
∀[M:Type ─→ Type]. (fulpRunType(T.M[T]) ⊆r pRunType(T.M[T]))
Proof
Definitions occuring in Statement : 
pRunType: pRunType(T.M[T])
, 
fulpRunType: fulpRunType(T.M[T])
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
subtype_rel_dep_function, 
nat_wf, 
Id_wf, 
pMsg_wf, 
unit_wf2, 
System_wf, 
top_wf, 
ldag_wf, 
pInTransit_wf, 
subtype_rel_product, 
list_wf, 
component_wf, 
subtype_rel_self
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  (fulpRunType(T.M[T])  \msubseteq{}r  pRunType(T.M[T]))
Date html generated:
2015_07_23-AM-11_09_29
Last ObjectModification:
2015_01_29-AM-00_08_38
Home
Index