Step
*
2
1
of Lemma
lg-label-deliver-msg
1. M : Type ─→ Type
2. Continuous+(P.M[P])
3. t : ℕ
4. x : Id
5. m : pMsg(P.M[P])
6. u1 : Id@i
7. u2 : Process(P.M[P])@i
8. v : component(P.M[P]) List@i
9. ∀X:component(P.M[P]) List
∀[G:LabeledDAG(pInTransit(P.M[P]))]. ∀[i:ℕlg-size(G)].
(lg-label(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
v
with starting value:
<X, G>));i)
= lg-label(G;i)
∈ pInTransit(P.M[P]))@i
10. X : component(P.M[P]) List@i
11. G : LabeledDAG(pInTransit(P.M[P]))
12. i : ℕlg-size(G)
13. u1 = x ∈ Id
14. v2 : Process(P.M[P])@i
15. v3 : pExt(P.M[P])@i
16. Process-apply(u2;m) = <v2, v3> ∈ (Process(P.M[P]) × pExt(P.M[P]))@i
⊢ lg-label(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
v
with starting value:
<[<u1, v2> / X], lg-append(G;add-cause(<t, x>;v3))>));i)
= lg-label(G;i)
∈ pInTransit(P.M[P])
BY
{ (RWO "9" 0 THEN Auto THEN Try ((Unfold `component` 0 THEN Auto))) }
1
1. M : Type ─→ Type
2. Continuous+(P.M[P])
3. t : ℕ
4. x : Id
5. m : pMsg(P.M[P])
6. u1 : Id@i
7. u2 : Process(P.M[P])@i
8. v : component(P.M[P]) List@i
9. ∀X:component(P.M[P]) List
∀[G:LabeledDAG(pInTransit(P.M[P]))]. ∀[i:ℕlg-size(G)].
(lg-label(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
v
with starting value:
<X, G>));i)
= lg-label(G;i)
∈ pInTransit(P.M[P]))@i
10. X : component(P.M[P]) List@i
11. G : LabeledDAG(pInTransit(P.M[P]))
12. i : ℤ
13. 0 ≤ i
14. i < lg-size(G)
15. u1 = x ∈ Id
16. v2 : Process(P.M[P])@i
17. v3 : pExt(P.M[P])@i
18. Process-apply(u2;m) = <v2, v3> ∈ (Process(P.M[P]) × pExt(P.M[P]))@i
⊢ i < lg-size(lg-append(G;add-cause(<t, x>;v3)))
2
1. M : Type ─→ Type
2. Continuous+(P.M[P])
3. t : ℕ
4. x : Id
5. m : pMsg(P.M[P])
6. u1 : Id@i
7. u2 : Process(P.M[P])@i
8. v : component(P.M[P]) List@i
9. ∀X:component(P.M[P]) List
∀[G:LabeledDAG(pInTransit(P.M[P]))]. ∀[i:ℕlg-size(G)].
(lg-label(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
v
with starting value:
<X, G>));i)
= lg-label(G;i)
∈ pInTransit(P.M[P]))@i
10. X : component(P.M[P]) List@i
11. G : LabeledDAG(pInTransit(P.M[P]))
12. i : ℕlg-size(G)
13. u1 = x ∈ Id
14. v2 : Process(P.M[P])@i
15. v3 : pExt(P.M[P])@i
16. Process-apply(u2;m) = <v2, v3> ∈ (Process(P.M[P]) × pExt(P.M[P]))@i
⊢ lg-label(lg-append(G;add-cause(<t, x>;v3));i) = lg-label(G;i) ∈ pInTransit(P.M[P])
Latex:
Latex:
1. M : Type {}\mrightarrow{} Type
2. Continuous+(P.M[P])
3. t : \mBbbN{}
4. x : Id
5. m : pMsg(P.M[P])
6. u1 : Id@i
7. u2 : Process(P.M[P])@i
8. v : component(P.M[P]) List@i
9. \mforall{}X:component(P.M[P]) List
\mforall{}[G:LabeledDAG(pInTransit(P.M[P]))]. \mforall{}[i:\mBbbN{}lg-size(G)].
(lg-label(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
v
with starting value:
<X, G>));i)
= lg-label(G;i))@i
10. X : component(P.M[P]) List@i
11. G : LabeledDAG(pInTransit(P.M[P]))
12. i : \mBbbN{}lg-size(G)
13. u1 = x
14. v2 : Process(P.M[P])@i
15. v3 : pExt(P.M[P])@i
16. Process-apply(u2;m) = <v2, v3>@i
\mvdash{} lg-label(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
v
with starting value:
<[<u1, v2> / X], lg-append(G;add-cause(<t, x>v3))>));i)
= lg-label(G;i)
By
Latex:
(RWO "9" 0 THEN Auto THEN Try ((Unfold `component` 0 THEN Auto)))
Home
Index