Nuprl Lemma : lg-label-deliver-msg
∀[M:Type ─→ Type]
  ∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[Cs:component(P.M[P]) List]. ∀[G:LabeledDAG(pInTransit(P.M[P]))].
  ∀[i:ℕlg-size(G)].
    (lg-label(snd(deliver-msg(t;m;x;Cs;G));i) = lg-label(G;i) ∈ pInTransit(P.M[P])) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
deliver-msg: deliver-msg(t;m;x;Cs;L)
, 
pInTransit: pInTransit(P.M[P])
, 
component: component(P.M[P])
, 
pMsg: pMsg(P.M[P])
, 
ldag: LabeledDAG(T)
, 
lg-label: lg-label(g;x)
, 
lg-size: lg-size(g)
, 
Id: Id
, 
list: T List
, 
strong-type-continuous: Continuous+(T.F[T])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
nil_wf, 
list_induction, 
list_accum_nil_lemma, 
lg-label_wf, 
pInTransit_wf, 
int_seg_wf, 
lg-size_wf, 
ldag_wf, 
list_accum_cons_lemma, 
eq_id_wf, 
bool_wf, 
eqtt_to_assert, 
assert-eq-id, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
cons_wf, 
Process_wf, 
list_wf, 
component_wf, 
pMsg_wf, 
Id_wf, 
nat_wf, 
strong-type-continuous_wf, 
list_accum_wf, 
System_wf, 
deliver-msg-to-comp_wf, 
all_wf, 
uall_wf, 
lg-size-deliver-msg-general, 
less_than_transitivity1, 
lelt_wf, 
le_wf, 
Process-apply_wf, 
pExt_wf, 
lg-append_wf_dag, 
add-cause_wf, 
lg-append_wf, 
iff_weakening_equal, 
less_than_wf, 
squash_wf, 
true_wf, 
lg-size-append, 
lg-label-append, 
lt_int_wf, 
assert_of_lt_int
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[Cs:component(P.M[P])  List].
    \mforall{}[G:LabeledDAG(pInTransit(P.M[P]))].  \mforall{}[i:\mBbbN{}lg-size(G)].
        (lg-label(snd(deliver-msg(t;m;x;Cs;G));i)  =  lg-label(G;i)) 
    supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_09_05
Last ObjectModification:
2015_02_04-PM-04_48_19
Home
Index