Nuprl Lemma : assert-eq-id
∀[a,b:Id].  uiff(↑a = b;a = b ∈ Id)
Proof
Definitions occuring in Statement : 
eq_id: a = b
, 
Id: Id
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eq_id: a = b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
eqof: eqof(d)
Lemmas referenced : 
id-deq_wf, 
deq_wf, 
Id_wf, 
equal_wf, 
iff_weakening_uiff, 
assert_wf, 
eqof_wf, 
safe-assert-deq, 
assert_witness, 
uiff_wf, 
eq_id_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
hypothesis, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
lambdaFormation, 
independent_pairFormation, 
hypothesisEquality, 
because_Cache, 
addLevel, 
productElimination, 
independent_isectElimination, 
applyEquality, 
independent_functionElimination, 
cumulativity, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[a,b:Id].    uiff(\muparrow{}a  =  b;a  =  b)
Date html generated:
2017_04_17-AM-09_18_34
Last ObjectModification:
2017_02_27-PM-05_22_08
Theory : decidable!equality
Home
Index