Nuprl Lemma : assert-eq-id

[a,b:Id].  uiff(↑b;a b ∈ Id)


Proof




Definitions occuring in Statement :  eq_id: b Id: Id assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eq_id: b all: x:A. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: iff: ⇐⇒ Q rev_implies:  Q eqof: eqof(d)
Lemmas referenced :  id-deq_wf deq_wf Id_wf equal_wf iff_weakening_uiff assert_wf eqof_wf safe-assert-deq assert_witness uiff_wf eq_id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid hypothesis thin sqequalHypSubstitution isectElimination lambdaFormation independent_pairFormation hypothesisEquality because_Cache addLevel productElimination independent_isectElimination applyEquality independent_functionElimination cumulativity sqequalRule equalityTransitivity equalitySymmetry dependent_functionElimination independent_pairEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[a,b:Id].    uiff(\muparrow{}a  =  b;a  =  b)



Date html generated: 2017_04_17-AM-09_18_34
Last ObjectModification: 2017_02_27-PM-05_22_08

Theory : decidable!equality


Home Index