Nuprl Lemma : lg-size-deliver-msg-general

[M:Type ─→ Type]
  ∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[Cs,X:component(P.M[P]) List]. ∀[G:LabeledDAG(pInTransit(P.M[P]))].
    (lg-size(G) ≤ lg-size(snd(accumulate (with value and list item C):
                               deliver-msg-to-comp(t;m;x;S;C)
                              over list:
                                Cs
                              with starting value:
                               <X, G>)))) 
  supposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  deliver-msg-to-comp: deliver-msg-to-comp(t;m;x;S;C) pInTransit: pInTransit(P.M[P]) component: component(P.M[P]) pMsg: pMsg(P.M[P]) ldag: LabeledDAG(T) lg-size: lg-size(g) Id: Id list_accum: list_accum list: List strong-type-continuous: Continuous+(T.F[T]) nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] pi2: snd(t) le: A ≤ B function: x:A ─→ B[x] pair: <a, b> universe: Type
Lemmas :  sq_stable__le lg-size_wf nat_wf ldag_wf pInTransit_wf list_wf component_wf pMsg_wf Id_wf strong-type-continuous_wf list_accum_wf deliver-msg-to-comp_wf System_wf list_induction all_wf le_wf list_accum_nil_lemma le_weakening list_accum_cons_lemma eq_id_wf bool_wf eqtt_to_assert assert-eq-id eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot Process-apply_wf Process_wf pExt_wf cons_wf lg-append_wf_dag add-cause_wf le_transitivity lg-append_wf squash_wf true_wf lg-size-append iff_weakening_equal

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[Cs,X:component(P.M[P])  List].
    \mforall{}[G:LabeledDAG(pInTransit(P.M[P]))].
        (lg-size(G)  \mleq{}  lg-size(snd(accumulate  (with  value  S  and  list  item  C):
                                                              deliver-msg-to-comp(t;m;x;S;C)
                                                            over  list:
                                                                Cs
                                                            with  starting  value:
                                                              <X,  G>)))) 
    supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_08_57
Last ObjectModification: 2015_02_04-PM-04_48_57

Home Index