Step
*
of Lemma
lg-size-deliver-msg-general
∀[M:Type ─→ Type]
∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[Cs,X:component(P.M[P]) List]. ∀[G:LabeledDAG(pInTransit(P.M[P]))].
(lg-size(G) ≤ lg-size(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
Cs
with starting value:
<X, G>))))
supposing Continuous+(P.M[P])
BY
{ (Intros THEN (Unhide THENA Auto)) }
1
.....wf.....
1. M : Type ─→ Type
2. Continuous+(P.M[P])
3. t : ℕ
4. x : Id
5. m : pMsg(P.M[P])
6. Cs : component(P.M[P]) List
7. X : component(P.M[P]) List
8. G : LabeledDAG(pInTransit(P.M[P]))
⊢ lg-size(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
Cs
with starting value:
<X, G>))) ∈ ℤ
2
1. M : Type ─→ Type
2. Continuous+(P.M[P])
3. t : ℕ
4. x : Id
5. m : pMsg(P.M[P])
6. Cs : component(P.M[P]) List
7. X : component(P.M[P]) List
8. G : LabeledDAG(pInTransit(P.M[P]))
⊢ lg-size(G) ≤ lg-size(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
Cs
with starting value:
<X, G>)))
Latex:
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]
\mforall{}[t:\mBbbN{}]. \mforall{}[x:Id]. \mforall{}[m:pMsg(P.M[P])]. \mforall{}[Cs,X:component(P.M[P]) List].
\mforall{}[G:LabeledDAG(pInTransit(P.M[P]))].
(lg-size(G) \mleq{} lg-size(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
Cs
with starting value:
<X, G>))))
supposing Continuous+(P.M[P])
By
Latex:
(Intros THEN (Unhide THENA Auto))
Home
Index