Step
*
1
of Lemma
member-eclass-simple-comb-2-iff
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. es : EO+(Info)
6. e : E
7. F : bag(A) ─→ bag(B) ─→ bag(C)
8. X : EClass(A)
9. Y : EClass(B)
10. lifting2-like(A;B;F)
11. single-valued-classrel(es;X;A)
12. single-valued-classrel(es;Y;B)
13. ↑e ∈b F|X, Y|
⊢ (↑e ∈b X) ∧ (↑e ∈b Y) ∧ (¬↑bag-null(F {X@e} {Y@e}))
BY
{ ((Unfold `lifting2-like` 10 THEN D 10)
THEN (RepUR ``member-eclass simple-comb-2 simple-comb`` (-1))⋅
THEN (RW assert_pushdownC (-1) THENA Auto)
THEN D -4) }
1
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. es : EO+(Info)
6. e : E
7. F : bag(A) ─→ bag(B) ─→ bag(C)
8. X : EClass(A)
9. Y : EClass(B)
10. ∀as:bag(A). ∀bs:bag(B). ∀a:A. ∀b:B.
(single-valued-bag(as;A)
⇒ single-valued-bag(bs;B)
⇒ a ↓∈ as
⇒ b ↓∈ bs
⇒ (↑bag-null(F as bs)
⇐⇒ ↑bag-null(F {a} {b})))
11. ∀as:bag(A). (↑bag-null(F as {}))
12. ∀bs:bag(B). (↑bag-null(F {} bs))
13. single-valued-classrel(es;X;A)
14. single-valued-classrel(es;Y;B)
15. ¬(#(F (X es e) (Y es e)) = 0 ∈ ℤ)
⊢ (↑e ∈b X) ∧ (↑e ∈b Y) ∧ (¬↑bag-null(F {X@e} {Y@e}))
Latex:
Latex:
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. es : EO+(Info)
6. e : E
7. F : bag(A) {}\mrightarrow{} bag(B) {}\mrightarrow{} bag(C)
8. X : EClass(A)
9. Y : EClass(B)
10. lifting2-like(A;B;F)
11. single-valued-classrel(es;X;A)
12. single-valued-classrel(es;Y;B)
13. \muparrow{}e \mmember{}\msubb{} F|X, Y|
\mvdash{} (\muparrow{}e \mmember{}\msubb{} X) \mwedge{} (\muparrow{}e \mmember{}\msubb{} Y) \mwedge{} (\mneg{}\muparrow{}bag-null(F \{X@e\} \{Y@e\}))
By
Latex:
((Unfold `lifting2-like` 10 THEN D 10)
THEN (RepUR ``member-eclass simple-comb-2 simple-comb`` (-1))\mcdot{}
THEN (RW assert\_pushdownC (-1) THENA Auto)
THEN D -4)
Home
Index