Nuprl Lemma : member-eclass-simple-comb-2-iff

[Info,A,B,C:Type]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[F:bag(A) ─→ bag(B) ─→ bag(C)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  (uiff(↑e ∈b F|X, Y|;(↑e ∈b X) ∧ (↑e ∈b Y) ∧ (¬↑bag-null(F {X@e} {Y@e})))) supposing 
     (single-valued-classrel(es;Y;B) and 
     single-valued-classrel(es;X;A) and 
     lifting2-like(A;B;F))


Proof




Definitions occuring in Statement :  lifting2-like: lifting2-like(A;B;f) simple-comb-2: F|X, Y| classfun-res: X@e single-valued-classrel: single-valued-classrel(es;X;T) member-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type bag-null: bag-null(bs) single-bag: {x} bag: bag(T)
Lemmas :  assert_witness assert_wf member-eclass_wf simple-comb-2_wf not_wf bag-null_wf single-bag_wf classfun-res_wf single-valued-classrel_wf lifting2-like_wf eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf bag_wf bnot_wf eq_int_wf bag-size_wf nat_wf equal-wf-T-base iff_transitivity iff_weakening_uiff assert_of_bnot assert_of_eq_int equal_wf null-bag-size empty-bag-iff-size le_wf decidable__lt false_wf not-le-2 condition-implies-le minus-add minus-zero add-zero add-commutes zero-add add_functionality_wrt_le le-add-cancel member-eclass-iff-size less_than_wf bag-member-classfun-res bag-member_wf neg_assert_of_eq_int

Latex:
\mforall{}[Info,A,B,C:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[F:bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C)].  \mforall{}[X:EClass(A)].
\mforall{}[Y:EClass(B)].
    (uiff(\muparrow{}e  \mmember{}\msubb{}  F|X,  Y|;(\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  \mwedge{}  (\mneg{}\muparrow{}bag-null(F  \{X@e\}  \{Y@e\}))))  supposing 
          (single-valued-classrel(es;Y;B)  and 
          single-valued-classrel(es;X;A)  and 
          lifting2-like(A;B;F))



Date html generated: 2015_07_23-AM-11_27_27
Last ObjectModification: 2015_01_28-PM-11_17_04

Home Index