Nuprl Lemma : null-bag-size

[T:Type]. ∀[x:bag(T)].  (bag-null(x) (#(x) =z 0))


Proof




Definitions occuring in Statement :  bag-size: #(bs) bag-null: bag-null(bs) bag: bag(T) eq_int: (i =z j) uall: [x:A]. B[x] natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q nat: bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb ifthenelse: if then else fi  assert: b false: False decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top empty-bag: {} bag-null: bag-null(bs) nequal: a ≠ b ∈ 
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base bag_wf eq_int_wf bag-size_wf eqtt_to_assert assert_of_eq_int nat_wf eqff_to_assert equal_wf bool_cases_sqequal assert-bnot neg_assert_of_eq_int bag-size-zero decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf itermConstant_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_wf null_nil_lemma btrue_wf bag-null_wf assert-bag-null equal-wf-T-base bfalse_wf bag_size_empty_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom hypothesisEquality sqequalRule isect_memberEquality because_Cache universeEquality applyEquality natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination lambdaEquality setElimination rename dependent_pairFormation promote_hyp voidElimination int_eqEquality intEquality voidEquality independent_pairFormation computeAll baseClosed hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:bag(T)].    (bag-null(x)  \msim{}  (\#(x)  =\msubz{}  0))



Date html generated: 2017_10_01-AM-08_45_56
Last ObjectModification: 2017_07_26-PM-04_31_01

Theory : bags


Home Index