Nuprl Lemma : bag-size-zero

[C:Type]. ∀[bs:bag(C)].  bs {} supposing #(bs) ≤ 0


Proof




Definitions occuring in Statement :  bag-size: #(bs) empty-bag: {} bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bag-size: #(bs) or: P ∨ Q empty-bag: {} uimplies: supposing a prop: cons: [a b] top: Top ge: i ≥  le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A nat:
Lemmas referenced :  bag-subtype-list list_wf top_wf list-cases length_of_nil_lemma le_wf product_subtype_list length_of_cons_lemma non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf length_wf equal_wf bag_wf bag-size_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis sqequalRule isectElimination lambdaFormation unionElimination sqequalAxiom natural_numberEquality promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll addEquality equalityTransitivity equalitySymmetry independent_functionElimination because_Cache cumulativity setElimination rename universeEquality

Latex:
\mforall{}[C:Type].  \mforall{}[bs:bag(C)].    bs  \msim{}  \{\}  supposing  \#(bs)  \mleq{}  0



Date html generated: 2017_10_01-AM-08_45_49
Last ObjectModification: 2017_07_26-PM-04_30_56

Theory : bags


Home Index