Step * 1 2 of Lemma pRun-invariant3


1. [M] Type ─→ Type
2. Continuous+(P.M[P])
3. n2m : ℕ ─→ pMsg(P.M[P])@i
4. l2m Id ─→ pMsg(P.M[P])@i
5. S0 System(P.M[P])@i
6. env pEnvType(P.M[P])@i
7. fulpRunType(P.M[P])@i
8. pRun(S0;env;n2m;l2m) r ∈ fulpRunType(P.M[P])@i
9. r ∈ pRunType(P.M[P])
10. ∀e:runEvents(r)
      sub-mset(Process(P.M[P]); map(λP.(fst(Process-apply(P;run-event-msg(r;e))));run-prior-state(S0;r;e));
               run-event-state(r;e))@i
11. ∀t:ℕ. ∀e1,e2:runEvents(r).
      ((run-event-loc(e1) run-event-loc(e2) ∈ Id)
       0 < run-event-step(e1)
       (run-event-step(e1) ≤ run-event-step(e2))
       run-event-step(e2) < t
       (∀P:Process(P.M[P])
            ((P ∈ run-event-state-when(r;e1))
             (iterate-Process(P;map(λe.run-event-msg(r;e);run-event-interval(r;e1;e2))) ∈ run-event-state(r;e2)))))
⊢ ∀e1,e2:runEvents(r).
    (∀P:Process(P.M[P])
       ((P ∈ run-event-state-when(r;e1))
        (iterate-Process(P;map(λe.run-event-msg(r;e);run-event-interval(r;e1;e2)))
            ∈ run-event-state(r;e2)))) supposing 
       ((run-event-step(e1) ≤ run-event-step(e2)) and 
       (run-event-loc(e1) run-event-loc(e2) ∈ Id))
BY
((D THENA Auto)
   THEN (Assert 0 < run-event-step(e1) BY
               ((InstLemma `run-event-step-positive` [⌈M⌉;⌈S0⌉;⌈n2m⌉;⌈l2m⌉;⌈env⌉]⋅ THENA Auto) THEN BHyp -1  THEN Auto))
   }

1
1. [M] Type ─→ Type
2. Continuous+(P.M[P])
3. n2m : ℕ ─→ pMsg(P.M[P])@i
4. l2m Id ─→ pMsg(P.M[P])@i
5. S0 System(P.M[P])@i
6. env pEnvType(P.M[P])@i
7. fulpRunType(P.M[P])@i
8. pRun(S0;env;n2m;l2m) r ∈ fulpRunType(P.M[P])@i
9. r ∈ pRunType(P.M[P])
10. ∀e:runEvents(r)
      sub-mset(Process(P.M[P]); map(λP.(fst(Process-apply(P;run-event-msg(r;e))));run-prior-state(S0;r;e));
               run-event-state(r;e))@i
11. ∀t:ℕ. ∀e1,e2:runEvents(r).
      ((run-event-loc(e1) run-event-loc(e2) ∈ Id)
       0 < run-event-step(e1)
       (run-event-step(e1) ≤ run-event-step(e2))
       run-event-step(e2) < t
       (∀P:Process(P.M[P])
            ((P ∈ run-event-state-when(r;e1))
             (iterate-Process(P;map(λe.run-event-msg(r;e);run-event-interval(r;e1;e2))) ∈ run-event-state(r;e2)))))
12. e1 runEvents(r)@i
13. 0 < run-event-step(e1)
⊢ ∀e2:runEvents(r)
    (∀P:Process(P.M[P])
       ((P ∈ run-event-state-when(r;e1))
        (iterate-Process(P;map(λe.run-event-msg(r;e);run-event-interval(r;e1;e2)))
            ∈ run-event-state(r;e2)))) supposing 
       ((run-event-step(e1) ≤ run-event-step(e2)) and 
       (run-event-loc(e1) run-event-loc(e2) ∈ Id))


Latex:



Latex:

1.  [M]  :  Type  {}\mrightarrow{}  Type
2.  Continuous+(P.M[P])
3.  n2m  :  \mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])@i
4.  l2m  :  Id  {}\mrightarrow{}  pMsg(P.M[P])@i
5.  S0  :  System(P.M[P])@i
6.  env  :  pEnvType(P.M[P])@i
7.  r  :  fulpRunType(P.M[P])@i
8.  pRun(S0;env;n2m;l2m)  =  r@i
9.  r  \mmember{}  pRunType(P.M[P])
10.  \mforall{}e:runEvents(r)
            sub-mset(Process(P.M[P]);  map(\mlambda{}P.(fst(Process-apply(P;run-event-msg(r;e))));
                                                                        run-prior-state(S0;r;e));  run-event-state(r;e))@i
11.  \mforall{}t:\mBbbN{}.  \mforall{}e1,e2:runEvents(r).
            ((run-event-loc(e1)  =  run-event-loc(e2))
            {}\mRightarrow{}  0  <  run-event-step(e1)
            {}\mRightarrow{}  (run-event-step(e1)  \mleq{}  run-event-step(e2))
            {}\mRightarrow{}  run-event-step(e2)  <  t
            {}\mRightarrow{}  (\mforall{}P:Process(P.M[P])
                        ((P  \mmember{}  run-event-state-when(r;e1))
                        {}\mRightarrow{}  (iterate-Process(P;map(\mlambda{}e.run-event-msg(r;e);run-event-interval(r;e1;e2)))
                                  \mmember{}  run-event-state(r;e2)))))
\mvdash{}  \mforall{}e1,e2:runEvents(r).
        (\mforall{}P:Process(P.M[P])
              ((P  \mmember{}  run-event-state-when(r;e1))
              {}\mRightarrow{}  (iterate-Process(P;map(\mlambda{}e.run-event-msg(r;e);run-event-interval(r;e1;e2)))
                        \mmember{}  run-event-state(r;e2))))  supposing 
              ((run-event-step(e1)  \mleq{}  run-event-step(e2))  and 
              (run-event-loc(e1)  =  run-event-loc(e2)))


By


Latex:
((D  0  THENA  Auto)
  THEN  (Assert  0  <  run-event-step(e1)  BY
                          ((InstLemma  `run-event-step-positive`  [\mkleeneopen{}M\mkleeneclose{};\mkleeneopen{}S0\mkleeneclose{};\mkleeneopen{}n2m\mkleeneclose{};\mkleeneopen{}l2m\mkleeneclose{};\mkleeneopen{}env\mkleeneclose{}]\mcdot{}  THENA  Auto)
                            THEN  BHyp  -1 
                            THEN  Auto))
  )




Home Index