Nuprl Lemma : pRun-invariant3
∀[M:Type ─→ Type]
  ∀n2m:ℕ ─→ pMsg(P.M[P]). ∀l2m:Id ─→ pMsg(P.M[P]). ∀S0:System(P.M[P]). ∀env:pEnvType(P.M[P]).
    let r = pRun(S0;env;n2m;l2m) in
        ∀e1,e2:runEvents(r).
          (∀P:Process(P.M[P])
             ((P ∈ run-event-state-when(r;e1))
             
⇒ (iterate-Process(P;map(λe.run-event-msg(r;e);run-event-interval(r;e1;e2)))
                  ∈ run-event-state(r;e2)))) supposing 
             ((run-event-step(e1) ≤ run-event-step(e2)) and 
             (run-event-loc(e1) = run-event-loc(e2) ∈ Id)) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
run-event-interval: run-event-interval(r;e1;e2)
, 
run-event-step: run-event-step(e)
, 
run-event-loc: run-event-loc(e)
, 
run-event-state-when: run-event-state-when(r;e)
, 
run-event-state: run-event-state(r;e)
, 
run-event-msg: run-event-msg(r;e)
, 
runEvents: runEvents(r)
, 
pRun: pRun(S0;env;nat2msg;loc2msg)
, 
pEnvType: pEnvType(T.M[T])
, 
System: System(P.M[P])
, 
iterate-Process: iterate-Process(P;msgs)
, 
pMsg: pMsg(P.M[P])
, 
Process: Process(P.M[P])
, 
Id: Id
, 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
strong-type-continuous: Continuous+(T.F[T])
, 
nat: ℕ
, 
let: let, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
l_member_wf, 
Process_wf, 
run-event-state-when_wf, 
less_than_transitivity1, 
run-event-step_wf, 
less_than_transitivity2, 
le_weakening2, 
less_than_irreflexivity, 
less_than_wf, 
le_wf, 
equal_wf, 
Id_wf, 
run-event-loc_wf, 
runEvents_wf, 
run-event-interval-cases, 
all_wf, 
nat_wf, 
subtract_wf, 
iterate-Process_wf, 
map_wf, 
pMsg_wf, 
run-event-msg_wf, 
run-event-interval_wf, 
run-event-state_wf, 
set_wf, 
primrec-wf2, 
squash_wf, 
true_wf, 
pRunType_wf, 
fulpRunType-subtype, 
iff_weakening_equal, 
fulpRunType_wf, 
run-event-state-next2, 
Process-apply_wf, 
subtype_rel_weakening, 
ext-eq_weakening, 
pExt_wf, 
exists_wf, 
member_map, 
member-reverse, 
subtype_base_sq, 
set_subtype_base, 
assert_wf, 
is-run-event_wf, 
product_subtype_base, 
int_subtype_base, 
atom2_subtype_base, 
le_weakening, 
member-run-event-interval, 
list_wf, 
list_subtype_base, 
member_singleton, 
map_cons_lemma, 
map_nil_lemma, 
iter_df_cons_lemma, 
iter_df_nil_lemma, 
subtype_rel_wf, 
sub-mset-contains, 
l_all_iff, 
map_append_sq, 
iterate-dataflow-append, 
subtype_rel_list, 
top_wf, 
decidable__lt, 
false_wf, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
add-commutes, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
run-event-step-positive, 
add-mul-special, 
zero-mul, 
add-zero
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S0:System(P.M[P]).  \mforall{}env:pEnvType(P.M[P]).
        let  r  =  pRun(S0;env;n2m;l2m)  in
                \mforall{}e1,e2:runEvents(r).
                    (\mforall{}P:Process(P.M[P])
                          ((P  \mmember{}  run-event-state-when(r;e1))
                          {}\mRightarrow{}  (iterate-Process(P;map(\mlambda{}e.run-event-msg(r;e);run-event-interval(r;e1;e2)))
                                    \mmember{}  run-event-state(r;e2))))  supposing 
                          ((run-event-step(e1)  \mleq{}  run-event-step(e2))  and 
                          (run-event-loc(e1)  =  run-event-loc(e2))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_14_48
Last ObjectModification:
2015_02_04-PM-04_50_43
Home
Index