Nuprl Lemma : ext-eq_weakening

[A,B:Type].  A ≡ supposing B ∈ Type


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaEquality hyp_replacement hypothesisEquality hypothesis equalitySymmetry sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality instantiate lemma_by_obid isectElimination universeEquality isect_memberEquality because_Cache equalityTransitivity

Latex:
\mforall{}[A,B:Type].    A  \mequiv{}  B  supposing  A  =  B



Date html generated: 2016_05_13-PM-03_19_05
Last ObjectModification: 2015_12_26-AM-09_07_55

Theory : subtype_0


Home Index