Nuprl Lemma : sub-mset-contains
∀[T:Type]. ∀L1,L2:T List.  (sub-mset(T; L1; L2) ⇒ L1 ⊆ L2)
Proof
Definitions occuring in Statement : 
sub-mset: sub-mset(T; L1; L2), 
l_contains: A ⊆ B, 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sub-mset: sub-mset(T; L1; L2), 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
l_contains: A ⊆ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
guard: {T}, 
or: P ∨ Q
Lemmas referenced : 
permutation_inversion, 
append_wf, 
permutation-contains, 
sub-mset_wf, 
list_wf, 
l_all_iff, 
l_member_wf, 
member_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (sub-mset(T;  L1;  L2)  {}\mRightarrow{}  L1  \msubseteq{}  L2)
Date html generated:
2016_05_15-PM-04_31_48
Last ObjectModification:
2015_12_27-PM-02_49_15
Theory : general
Home
Index