Nuprl Lemma : sub-mset-contains

[T:Type]. ∀L1,L2:T List.  (sub-mset(T; L1; L2)  L1 ⊆ L2)


Proof




Definitions occuring in Statement :  sub-mset: sub-mset(T; L1; L2) l_contains: A ⊆ B list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sub-mset: sub-mset(T; L1; L2) exists: x:A. B[x] member: t ∈ T prop: l_contains: A ⊆ B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} or: P ∨ Q
Lemmas referenced :  permutation_inversion append_wf permutation-contains sub-mset_wf list_wf l_all_iff l_member_wf member_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination hypothesisEquality dependent_functionElimination hypothesis independent_functionElimination because_Cache universeEquality sqequalRule lambdaEquality setElimination rename setEquality inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (sub-mset(T;  L1;  L2)  {}\mRightarrow{}  L1  \msubseteq{}  L2)



Date html generated: 2016_05_15-PM-04_31_48
Last ObjectModification: 2015_12_27-PM-02_49_15

Theory : general


Home Index