Step
*
of Lemma
rec-dataflow_wf2
∀[S,A,B:Type ─→ Type].
(let Proc = corec(P.A[P] ─→ (P × B[P])) in
∀s0:S[Proc]. ∀next:∩T:{T:Type| Proc ⊆r T} . (S[A[T] ─→ (T × B[T])] ─→ A[T] ─→ (S[T] × B[T])).
(rec-dataflow(s0;s,m.next[s;m]) ∈ Proc)) supposing
(Continuous+(T.B[T]) and
Continuous+(T.A[T]) and
Continuous+(T.S[T]))
BY
{ (Auto
THEN RepUR ``let`` 0
THEN Auto
THEN Unfold `rec-dataflow` 0
THEN Using [`A',⌈S⌉] (BLemma `fix_wf_corec_parameter3`)⋅
THEN Auto
THEN Isect2CD
THEN Auto) }
Latex:
Latex:
\mforall{}[S,A,B:Type {}\mrightarrow{} Type].
(let Proc = corec(P.A[P] {}\mrightarrow{} (P \mtimes{} B[P])) in
\mforall{}s0:S[Proc]. \mforall{}next:\mcap{}T:\{T:Type| Proc \msubseteq{}r T\} . (S[A[T] {}\mrightarrow{} (T \mtimes{} B[T])] {}\mrightarrow{} A[T] {}\mrightarrow{} (S[T] \mtimes{} B[T])).
(rec-dataflow(s0;s,m.next[s;m]) \mmember{} Proc)) supposing
(Continuous+(T.B[T]) and
Continuous+(T.A[T]) and
Continuous+(T.S[T]))
By
Latex:
(Auto
THEN RepUR ``let`` 0
THEN Auto
THEN Unfold `rec-dataflow` 0
THEN Using [`A',\mkleeneopen{}S\mkleeneclose{}] (BLemma `fix\_wf\_corec\_parameter3`)\mcdot{}
THEN Auto
THEN Isect2CD
THEN Auto)
Home
Index