Nuprl Lemma : rec-dataflow_wf2

[S,A,B:Type ─→ Type].
  (let Proc corec(P.A[P] ─→ (P × B[P])) in
       ∀s0:S[Proc]. ∀next:∩T:{T:Type| Proc ⊆T} (S[A[T] ─→ (T × B[T])] ─→ A[T] ─→ (S[T] × B[T])).
         (rec-dataflow(s0;s,m.next[s;m]) ∈ Proc)) supposing 
     (Continuous+(T.B[T]) and 
     Continuous+(T.A[T]) and 
     Continuous+(T.S[T]))


Proof




Definitions occuring in Statement :  rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) corec: corec(T.F[T]) strong-type-continuous: Continuous+(T.F[T]) let: let uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  isect: x:A. B[x] function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  nat_wf fix_wf_corec_parameter3 top_wf bool_wf subtype_rel_wf corec_wf strong-type-continuous_wf

Latex:
\mforall{}[S,A,B:Type  {}\mrightarrow{}  Type].
    (let  Proc  =  corec(P.A[P]  {}\mrightarrow{}  (P  \mtimes{}  B[P]))  in
              \mforall{}s0:S[Proc].  \mforall{}next:\mcap{}T:\{T:Type|  Proc  \msubseteq{}r  T\}  .  (S[A[T]  {}\mrightarrow{}  (T  \mtimes{}  B[T])]  {}\mrightarrow{}  A[T]  {}\mrightarrow{}  (S[T]  \mtimes{}  B[T])).
                  (rec-dataflow(s0;s,m.next[s;m])  \mmember{}  Proc))  supposing 
          (Continuous+(T.B[T])  and 
          Continuous+(T.A[T])  and 
          Continuous+(T.S[T]))



Date html generated: 2015_07_23-AM-11_05_28
Last ObjectModification: 2015_01_28-PM-11_35_20

Home Index