Nuprl Lemma : run-command_wf
∀[M:Type ─→ Type]. ∀[r:pRunType(P.M[P])]. ∀[t,n:ℕ].
  run-command(r;t;n) ∈ pInTransit(P.M[P]) supposing run-command-node(r;t;n)
Proof
Definitions occuring in Statement : 
run-command: run-command(r;t;n)
, 
run-command-node: run-command-node(r;t;n)
, 
pRunType: pRunType(T.M[T])
, 
pInTransit: pInTransit(P.M[P])
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
run-command-node_wf, 
nat_wf, 
pRunType_wf, 
Id_wf, 
pMsg_wf, 
unit_wf2, 
top_wf, 
ldag_wf, 
pInTransit_wf, 
lg-label_wf, 
lelt_wf, 
lg-size_wf, 
less_than_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[t,n:\mBbbN{}].
    run-command(r;t;n)  \mmember{}  pInTransit(P.M[P])  supposing  run-command-node(r;t;n)
Date html generated:
2015_07_23-AM-11_17_21
Last ObjectModification:
2015_01_28-PM-11_17_47
Home
Index