Step
*
3
of Lemma
run-prior-state-property
1. M : Type ─→ Type
2. S0 : System(P.M[P])@i
3. r : fulpRunType(P.M[P])@i
4. (r 0) = <inr ⋅ , S0> ∈ (ℤ × Id × Id × pMsg(P.M[P])? × System(P.M[P]))
5. n : ℕ@i
6. ∀i:ℕ
((∀n1:ℕi. ∀x:Id.
∃m:ℕn1
((run-prior-state(S0;r;<n1, x>) = let info,Cs,G = r m in mapfilter(λc.(snd(c));λc.fst(c) = x;Cs) ∈ (Process(P.\000CM[P]) List))
∧ (∀t:{m + 1..n1-}. (¬↑is-run-event(r;t;x))))
supposing 0 < n1)
⇒ (∀x:Id
∃m:ℕi
((run-prior-state(S0;r;<i, x>) = let info,Cs,G = r m in mapfilter(λc.(snd(c));λc.fst(c) = x;Cs) ∈ (Process(P\000C.M[P]) List))
∧ (∀t:{m + 1..i-}. (¬↑is-run-event(r;t;x))))
supposing 0 < i))
7. n1 : ℕ@i
8. x : Id@i
9. 0 < n1@i
10. m : ℕn1@i
11. r ∈ pRunType(P.M[P])
⊢ let info,Cs,G = r m in
mapfilter(λc.(snd(c));λc.fst(c) = x;Cs) ∈ Process(P.M[P]) List
BY
{ (Thin (-1) THEN (Assert λc.fst(c) = x ∈ component(P.M[P]) ─→ 𝔹 BY Auto) THEN Auto) }
Latex:
Latex:
1. M : Type {}\mrightarrow{} Type
2. S0 : System(P.M[P])@i
3. r : fulpRunType(P.M[P])@i
4. (r 0) = <inr \mcdot{} , S0>
5. n : \mBbbN{}@i
6. \mforall{}i:\mBbbN{}
((\mforall{}n1:\mBbbN{}i. \mforall{}x:Id.
\mexists{}m:\mBbbN{}n1
((run-prior-state(S0;r;<n1, x>) = let info,Cs,G = r m in mapfilter(\mlambda{}c.(snd(c));\mlambda{}c.fst(c) =\000C x;Cs))
\mwedge{} (\mforall{}t:\{m + 1..n1\msupminus{}\}. (\mneg{}\muparrow{}is-run-event(r;t;x))))
supposing 0 < n1)
{}\mRightarrow{} (\mforall{}x:Id
\mexists{}m:\mBbbN{}i
((run-prior-state(S0;r;<i, x>) = let info,Cs,G = r m in mapfilter(\mlambda{}c.(snd(c));\mlambda{}c.fst(c) \000C= x;Cs))
\mwedge{} (\mforall{}t:\{m + 1..i\msupminus{}\}. (\mneg{}\muparrow{}is-run-event(r;t;x))))
supposing 0 < i))
7. n1 : \mBbbN{}@i
8. x : Id@i
9. 0 < n1@i
10. m : \mBbbN{}n1@i
11. r \mmember{} pRunType(P.M[P])
\mvdash{} let info,Cs,G = r m in
mapfilter(\mlambda{}c.(snd(c));\mlambda{}c.fst(c) = x;Cs) \mmember{} Process(P.M[P]) List
By
Latex:
(Thin (-1) THEN (Assert \mlambda{}c.fst(c) = x \mmember{} component(P.M[P]) {}\mrightarrow{} \mBbbB{} BY Auto) THEN Auto)
Home
Index