Nuprl Lemma : run-prior-state-property

[M:Type ─→ Type]
  ∀S0:System(P.M[P]). ∀r:fulpRunType(P.M[P]).
    ∀n:ℕ. ∀x:Id.
      ∃m:ℕn
       ((run-prior-state(S0;r;<n, x>let info,Cs,G in mapfilter(λc.(snd(c));λc.fst(c) x;Cs) ∈ (Process(P.M[P]\000C) List))
       ∧ (∀t:{m 1..n-}. (¬↑is-run-event(r;t;x)))) 
      supposing 0 < 
    supposing (r 0) = <inr ⋅ S0> ∈ (ℤ × Id × Id × pMsg(P.M[P])? × System(P.M[P]))


Proof




Definitions occuring in Statement :  run-prior-state: run-prior-state(S0;r;e) is-run-event: is-run-event(r;t;x) fulpRunType: fulpRunType(T.M[T]) System: System(P.M[P]) pMsg: pMsg(P.M[P]) Process: Process(P.M[P]) eq_id: b Id: Id mapfilter: mapfilter(f;P;L) list: List int_seg: {i..j-} nat: assert: b less_than: a < b it: spreadn: spread3 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q unit: Unit apply: a lambda: λx.A[x] function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] inr: inr  union: left right add: m natural_number: $n int: universe: Type equal: t ∈ T
Lemmas :  member-less_than fulpRunType-subtype less_than_wf all_wf int_seg_wf isect_wf exists_wf list_wf Process_wf run-prior-state_wf int_seg_subtype-nat not_wf assert_wf is-run-event_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf complete_nat_ind equal_wf Id_wf pMsg_wf unit_wf2 le_wf it_wf fulpRunType_wf System_wf decidable__equal_int subtype_base_sq int_subtype_base length_wf le-add-cancel2 less-iff-le minus-zero lelt_wf component_wf eq_id_wf mapfilter_wf eqtt_to_assert bool_wf isl_wf set_wf subtype_rel_self l_member_wf subtype_rel_dep_function filter_wf5 map_wf map_cons_lemma filter_cons_lemma decidable__assert subtract_wf minus-minus subtract-is-less upto_decomp1 bnot_wf assert_elim last_singleton_append equal-wf-T-base assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert btrue_neq_bfalse btrue_wf null_nil_lemma and_wf append_is_nil bfalse_wf null_cons_lemma assert_of_null top_wf subtype_rel_list nil_wf cons_wf subtype_rel_sets from-upto_wf append_wf null_wf3 map_nil_lemma filter_nil_lemma mapfilter-append decidable__lt not-equal-2 run-event-state_wf append-nil last_wf product_subtype_list equal-wf-base list-cases runEvents_wf filter_type assert_functionality_wrt_uiff not_assert_elim squash_wf true_wf pRunType_wf le-add-cancel-alt

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}S0:System(P.M[P]).  \mforall{}r:fulpRunType(P.M[P]).
        \mforall{}n:\mBbbN{}.  \mforall{}x:Id.
            \mexists{}m:\mBbbN{}n
              ((run-prior-state(S0;r;<n,  x>)  =  let  info,Cs,G  =  r  m  in  mapfilter(\mlambda{}c.(snd(c));\mlambda{}c.fst(c)  =  x;C\000Cs))
              \mwedge{}  (\mforall{}t:\{m  +  1..n\msupminus{}\}.  (\mneg{}\muparrow{}is-run-event(r;t;x)))) 
            supposing  0  <  n 
        supposing  (r  0)  =  <inr  \mcdot{}  ,  S0>



Date html generated: 2015_07_23-AM-11_11_58
Last ObjectModification: 2015_07_16-AM-09_38_48

Home Index