Nuprl Lemma : append_is_nil
∀[T:Type]. ∀[l1,l2:T List].  uiff((l1 @ l2) = [] ∈ (T List);(l1 = [] ∈ (T List)) ∧ (l2 = [] ∈ (T List)))
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
nil: []
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
not: ¬A
, 
false: False
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
uiff_wf, 
equal_wf, 
append_wf, 
nil_wf, 
and_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
null_nil_lemma, 
btrue_wf, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
because_Cache, 
lambdaFormation, 
rename, 
dependent_set_memberEquality, 
applyEquality, 
setElimination, 
setEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l1,l2:T  List].    uiff((l1  @  l2)  =  [];(l1  =  [])  \mwedge{}  (l2  =  []))
Date html generated:
2016_05_14-AM-06_42_12
Last ObjectModification:
2015_12_26-PM-00_29_32
Theory : list_0
Home
Index