Nuprl Lemma : upto_decomp1
∀[n:ℕ+]. (upto(n) ~ upto(n - 1) @ [n - 1])
Proof
Definitions occuring in Statement : 
upto: upto(n), 
append: as @ bs, 
cons: [a / b], 
nil: [], 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
subtract: n - m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
sq_type: SQType(T), 
guard: {T}, 
upto: upto(n), 
from-upto: [n, m), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
has-value: (a)↓
Lemmas referenced : 
upto_decomp, 
nat_plus_subtype_nat, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
nat_plus_wf, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
from-upto-shift, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
zero-add, 
value-type-has-value, 
int-value-type, 
from-upto-is-nil
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
dependent_set_memberEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
because_Cache, 
addEquality, 
sqequalAxiom, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
lambdaFormation, 
equalityElimination, 
productElimination, 
promote_hyp, 
callbyvalueReduce
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (upto(n)  \msim{}  upto(n  -  1)  @  [n  -  1])
Date html generated:
2017_04_17-AM-07_57_37
Last ObjectModification:
2017_02_27-PM-04_29_27
Theory : list_1
Home
Index