Nuprl Lemma : from-upto-is-nil
∀[n,m:ℤ].  uiff([n, m) ~ [];m ≤ n)
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
nil: []
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
from-upto: [n, m)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bnot: ¬bb
, 
assert: ↑b
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cons: [a / b]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
true: True
Lemmas referenced : 
equal-wf-base, 
list_wf, 
int_subtype_base, 
le_wf, 
length_of_nil_lemma, 
list_subtype_base, 
length-from-upto, 
lt_int_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
equal_wf, 
bool_cases_sqequal, 
assert-bnot, 
nil_wf, 
le_witness_for_triv, 
from-upto_wf, 
set_wf, 
list-cases, 
product_subtype_list, 
istype-sqequal, 
full-omega-unsat, 
istype-int, 
istype-void, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
less_than'_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
independent_isectElimination, 
equalityTransitivity, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
unionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
productElimination, 
impliesFunctionality, 
equalityElimination, 
promote_hyp, 
axiomSqEquality, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
independent_pairEquality, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
equalityIstype, 
lambdaEquality_alt, 
productEquality, 
universeIsType, 
hypothesis_subsumption, 
rename, 
sqequalBase, 
setElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
isect_memberFormation, 
axiomEquality, 
sqequalIntensionalEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].    uiff([n,  m)  \msim{}  [];m  \mleq{}  n)
Date html generated:
2019_10_15-AM-10_22_39
Last ObjectModification:
2019_08_05-PM-01_55_33
Theory : list_1
Home
Index