Nuprl Lemma : from-upto-is-nil

[n,m:ℤ].  uiff([n, m) [];m ≤ n)


Proof




Definitions occuring in Statement :  from-upto: [n, m) nil: [] uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B rev_implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff from-upto: [n, m) bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] cons: [a b] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] true: True
Lemmas referenced :  equal-wf-base list_wf int_subtype_base le_wf length_of_nil_lemma list_subtype_base length-from-upto lt_int_wf satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformeq_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf assert_wf bnot_wf not_wf less_than_wf decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot equal_wf bool_cases_sqequal assert-bnot nil_wf le_witness_for_triv from-upto_wf set_wf list-cases product_subtype_list istype-sqequal full-omega-unsat istype-int istype-void list_ind_nil_lemma list_ind_cons_lemma less_than'_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache natural_numberEquality hyp_replacement equalitySymmetry applyLambdaEquality independent_isectElimination equalityTransitivity dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll unionElimination instantiate cumulativity independent_functionElimination productElimination impliesFunctionality equalityElimination promote_hyp axiomSqEquality inhabitedIsType isectIsTypeImplies isect_memberEquality_alt independent_pairEquality isect_memberFormation_alt lambdaFormation_alt equalityIstype lambdaEquality_alt productEquality universeIsType hypothesis_subsumption rename sqequalBase setElimination approximateComputation dependent_pairFormation_alt isect_memberFormation axiomEquality sqequalIntensionalEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    uiff([n,  m)  \msim{}  [];m  \mleq{}  n)



Date html generated: 2019_10_15-AM-10_22_39
Last ObjectModification: 2019_08_05-PM-01_55_33

Theory : list_1


Home Index