Nuprl Lemma : from-upto-shift

[n,m,k:ℤ].  (map(λx.(x k);[n, m)) [n k, k))


Proof




Definitions occuring in Statement :  from-upto: [n, m) map: map(f;as) uall: [x:A]. B[x] lambda: λx.A[x] add: m int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q from-upto: [n, m) has-value: (a)↓ bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than istype-le subtract_wf subtract-1-ge-0 istype-nat from-upto-is-nil decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma map_nil_lemma itermAdd_wf int_term_value_add_lemma value-type-has-value int-value-type lt_int_wf eqtt_to_assert assert_of_lt_int map_cons_lemma eqff_to_assert int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot iff_weakening_uiff assert_wf less_than_wf list_wf list_subtype_base add-commutes add-associates add-swap cons_wf from-upto_wf subtype_rel_list le_wf equal_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomSqEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  because_Cache productElimination unionElimination addEquality callbyvalueReduce intEquality equalityElimination equalityTransitivity equalitySymmetry Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality promote_hyp instantiate cumulativity Error :equalityIsType1,  setEquality productEquality Error :setIsType,  Error :productIsType,  isect_memberEquality isect_memberFormation voidEquality lambdaEquality dependent_pairFormation dependent_set_memberEquality lambdaFormation

Latex:
\mforall{}[n,m,k:\mBbbZ{}].    (map(\mlambda{}x.(x  +  k);[n,  m))  \msim{}  [n  +  k,  m  +  k))



Date html generated: 2019_06_20-PM-01_34_02
Last ObjectModification: 2018_10_18-AM-11_38_47

Theory : list_1


Home Index