Nuprl Lemma : run-prior-state_wf
∀[M:Type ─→ Type]. ∀[S0:System(P.M[P])]. ∀[r:fulpRunType(P.M[P])]. ∀[e:ℕ × Id].
  (run-prior-state(S0;r;e) ∈ Process(P.M[P]) List)
Proof
Definitions occuring in Statement : 
run-prior-state: run-prior-state(S0;r;e)
, 
fulpRunType: fulpRunType(T.M[T])
, 
System: System(P.M[P])
, 
Process: Process(P.M[P])
, 
Id: Id
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
fulpRunType-subtype, 
mapfilter_wf, 
le_wf, 
less_than_wf, 
from-upto_wf, 
is-run-event_wf, 
assert_wf, 
subtype_rel_sets, 
set_wf, 
list_wf, 
eq_id_wf, 
component_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
Process_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
nat_wf, 
Id_wf, 
fulpRunType_wf, 
System_wf, 
last_wf, 
not_wf, 
pMsg_wf, 
unit_wf2
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[S0:System(P.M[P])].  \mforall{}[r:fulpRunType(P.M[P])].  \mforall{}[e:\mBbbN{}  \mtimes{}  Id].
    (run-prior-state(S0;r;e)  \mmember{}  Process(P.M[P])  List)
Date html generated:
2015_07_23-AM-11_11_43
Last ObjectModification:
2015_01_29-AM-00_08_11
Home
Index