{ [q:(Id  (pi_prefix() List)) List]
    (Comm-process-q_aux(q)  Id
                              st:Id fp-pi_prefix() List
                              ((Id  (pi_prefix() List)) List
                                 st:Id fp-pi_prefix() List
                                 Id
                                 ((  Id    Name) List))) }

{ Proof }



Definitions occuring in Statement :  Comm-process-q_aux: Comm-process-q_aux(q) pi_prefix: pi_prefix() fpf: a:A fp-B[a] Id: Id name: Name nat: uall: [x:A]. B[x] member: t  T function: x:A  B[x] product: x:A  B[x] list: type List
Definitions :  eclass: EClass(A[eo; e]) strong-subtype: strong-subtype(A;B) atom: Atom$n le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B pi1: fst(t) pi2: snd(t) get-triples: get-triples(preList;st) fpf-single: x : v id-deq: IdDeq fpf-join: f  g null: null(as) ifthenelse: if b then t else f fi  apply: f a let: let list_ind: list_ind def nil: [] pair: <a, b> lambda: x.A[x] all: x:A. B[x] axiom: Ax Comm-process-q_aux: Comm-process-q_aux(q) equal: s = t name: Name nat: fpf: a:A fp-B[a] so_lambda: x.t[x] prop: universe: Type list: type List pi_prefix: pi_prefix() Id: Id uall: [x:A]. B[x] isect: x:A. B[x] member: t  T function: x:A  B[x] product: x:A  B[x] Auto: Error :Auto,  THEN: Error :THEN,  void: Void fpf-cap: f(x)?z subtype: S  T top: Top RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  top_wf pi1_wf_top fpf-single_wf fpf-join_wf pi2_wf null_wf3 id-deq_wf nat_wf name_wf ifthenelse_wf Id_wf pi_prefix_wf fpf_wf get-triples_wf pi1_wf member_wf uall_wf

\mforall{}[q:(Id  \mtimes{}  (pi\_prefix()  List))  List]
    (Comm-process-q\_aux(q)  \mmember{}  Id
                                                      {}\mrightarrow{}  st:Id  fp->  pi\_prefix()  List
                                                      {}\mrightarrow{}  ((Id  \mtimes{}  (pi\_prefix()  List))  List
                                                            \mtimes{}  st:Id  fp->  pi\_prefix()  List
                                                            \mtimes{}  Id
                                                            \mtimes{}  ((\mBbbN{}  \mtimes{}  Id  \mtimes{}  \mBbbN{}  \mtimes{}  Name)  List)))


Date html generated: 2011_08_17-PM-07_02_18
Last ObjectModification: 2011_06_18-PM-12_42_59

Home Index