{ [x:Id]. has-valueall(x) }

{ Proof }



Definitions occuring in Statement :  Id: Id uall: [x:A]. B[x] has-valueall: has-valueall(a)
Definitions :  universe: Type atom: Atom rec: rec(x.A[x]) quotient: x,y:A//B[x; y] set: {x:A| B[x]}  tunion: x:A.B[x] b-union: A  B union: left + right implies: P  Q list: type List valueall-type: valueall-type(T) so_lambda: x.t[x] member: t  T has-valueall: has-valueall(a) callbyvalueall: callbyvalueall int: subtype_rel: A r B less_than: a < b all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a isect: x:A. B[x] ge: i  j  le: A  B not: A Id: Id atom: Atom$n equal: s = t strong-subtype: strong-subtype(A;B) MaAuto: Error :MaAuto,  Unfold: Error :Unfold,  tactic: Error :tactic,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  uall_wf valueall-type_wf Id-valueall-type Id_wf

\mforall{}[x:Id].  has-valueall(x)


Date html generated: 2011_08_10-AM-07_43_19
Last ObjectModification: 2011_06_18-AM-08_09_53

Home Index