{ es:EO. e,e':es-base-E(es).  (es-bcausl(es;e;e')  (e < e')) }

{ Proof }



Definitions occuring in Statement :  es-bcausl: es-bcausl(es;e;e') es-causl: (e < e') es-base-E: es-base-E(es) event_ordering: EO assert: b all: x:A. B[x] iff: P  Q
Definitions :  inr: inr x  false: False inl: inl x  rev_implies: P  Q true: True assert: b es-E: E so_lambda: x.t[x] es-causl: (e < e') es-bcausl: es-bcausl(es;e;e') set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: limited-type: LimitedType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  uiff: uiff(P;Q) intensional-universe: IType fpf: a:A fp-B[a] subtype_rel: A r B eq_atom: eq_atom$n(x;y) bool: prop: less_than: a < b nat: not: A l_member: (x  l) implies: P  Q list: type List exists: x:A. B[x] infix_ap: x f y union: left + right or: P  Q Id: Id uimplies: b supposing a atom: Atom apply: f a top: Top universe: Type token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x record: record(x.T[x]) dep-isect: Error :dep-isect,  record+: record+ iff: P  Q and: P  Q product: x:A  B[x] event_ordering: EO es-base-E: es-base-E(es) all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] equal: s = t member: t  T Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  MaAuto: Error :MaAuto,  Unfold: Error :Unfold,  tactic: Error :tactic
Lemmas :  event_ordering_wf member_wf es-causl_wf not_wf top_wf record-select_wf Id_wf l_member_wf nat_wf subtype_rel_wf intensional-universe_wf bool_wf subtype_rel_self es-base-E_wf es-E_wf true_wf false_wf

\mforall{}es:EO.  \mforall{}e,e':es-base-E(es).    (\muparrow{}es-bcausl(es;e;e')  \mLeftarrow{}{}\mRightarrow{}  (e  <  e'))


Date html generated: 2011_08_16-AM-10_23_16
Last ObjectModification: 2010_11_23-PM-05_32_05

Home Index