{ [A:Type]. [B:A  Type]. [f:x:A fp-B[x]].  uiff(fpf-is-empty(f);f = ) }

{ Proof }



Definitions occuring in Statement :  fpf-is-empty: fpf-is-empty(f) fpf-empty: fpf: a:A fp-B[a] assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t
Definitions :  fpf: a:A fp-B[a] fpf-is-empty: fpf-is-empty(f) fpf-empty: pi1: fst(t) member: t  T uall: [x:A]. B[x] so_apply: x[s] uiff: uiff(P;Q) and: P  Q uimplies: b supposing a prop: so_lambda: x.t[x] false: False assert: b eq_int: (i = j) length: ||as|| top: Top all: x:A. B[x] subtype: S  T ycomb: Y btrue: tt ifthenelse: if b then t else f fi  true: True implies: P  Q iff: P  Q l_member: (x  l) exists: x:A. B[x] nat: cand: A c B le: A  B not: A pi2: snd(t)
Lemmas :  eq_int_wf length_wf1 assert_wf assert_witness fpf_wf fpf-empty_wf iff_weakening_uiff assert_of_eq_int length_zero l_member_wf false_wf it_wf unit_wf pi2_wf pi1_wf_top

\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].    uiff(\muparrow{}fpf-is-empty(f);f  =  \motimes{})


Date html generated: 2011_08_10-AM-07_55_25
Last ObjectModification: 2011_06_18-AM-08_16_38

Home Index