{ [V:Type]
    A:Id List. r:consensus-rcv(V;A). i:.
      (inning(r) = i  a:{b:Id| (b  A)} . v:V. (r = Vote[a;i;v])) }

{ Proof }



Definitions occuring in Statement :  rcvd-inning-eq: inning(r) = i cs-rcv-vote: Vote[a;i;v] consensus-rcv: consensus-rcv(V;A) Id: Id assert: b nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: P  Q set: {x:A| B[x]}  list: type List universe: Type equal: s = t l_member: (x  l)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] consensus-rcv: consensus-rcv(V;A) iff: P  Q assert: b rcvd-inning-eq: inning(r) = i exists: x:A. B[x] band: p  q rcv-vote?: rcv-vote?(x) spreadn: spread3 rcvd-vote: rcvd-vote(x) bfalse: ff btrue: tt outr: outr(x) ifthenelse: if b then t else f fi  and: P  Q implies: P  Q rev_implies: P  Q member: t  T prop: false: False nat: le: A  B squash: T true: True not: A bnot: b isl: isl(x) top: Top subtype: S  T so_lambda: x.t[x] cs-rcv-vote: Vote[a;i;v] uimplies: b supposing a pi1: fst(t) pi2: snd(t) so_apply: x[s]
Lemmas :  Id_wf l_member_wf consensus-rcv_wf nat_wf cs-rcv-vote_wf iff_weakening_uiff assert_of_eq_int assert_wf eq_int_wf nat_properties le_wf outr_wf bnot_wf isl_wf pi1_wf_top pi2_wf

\mforall{}[V:Type]
    \mforall{}A:Id  List.  \mforall{}r:consensus-rcv(V;A).  \mforall{}i:\mBbbN{}.
        (\muparrow{}inning(r)  =\msubz{}  i  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:\{b:Id|  (b  \mmember{}  A)\}  .  \mexists{}v:V.  (r  =  Vote[a;i;v]))


Date html generated: 2011_08_16-AM-10_11_10
Last ObjectModification: 2011_06_18-AM-09_03_59

Home Index