{ [V:Type]
    A:Id List. r:consensus-rcv(V;A). i:.
      (i <z inning(r)
       a:{b:Id| (b  A)} . v:V. j:. ((i < j)  (r = Vote[a;j;v]))) }

{ Proof }



Definitions occuring in Statement :  rcvd-inning-gt: i <z inning(r) cs-rcv-vote: Vote[a;i;v] consensus-rcv: consensus-rcv(V;A) Id: Id assert: b nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: P  Q and: P  Q less_than: a < b set: {x:A| B[x]}  list: type List int: universe: Type equal: s = t l_member: (x  l)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] consensus-rcv: consensus-rcv(V;A) iff: P  Q assert: b rcvd-inning-gt: i <z inning(r) exists: x:A. B[x] and: P  Q band: p  q rcv-vote?: rcv-vote?(x) spreadn: spread3 rcvd-vote: rcvd-vote(x) bfalse: ff btrue: tt outr: outr(x) ifthenelse: if b then t else f fi  implies: P  Q rev_implies: P  Q member: t  T prop: cand: A c B false: False bnot: b isl: isl(x) true: True top: Top subtype: S  T so_lambda: x.t[x] squash: T nat: cs-rcv-vote: Vote[a;i;v] uimplies: b supposing a pi1: fst(t) pi2: snd(t) so_apply: x[s] le: A  B not: A
Lemmas :  Id_wf l_member_wf nat_wf nat_properties consensus-rcv_wf cs-rcv-vote_wf iff_weakening_uiff assert_of_lt_int assert_wf lt_int_wf outr_wf bnot_wf isl_wf pi1_wf_top pi2_wf le_wf

\mforall{}[V:Type]
    \mforall{}A:Id  List.  \mforall{}r:consensus-rcv(V;A).  \mforall{}i:\mBbbZ{}.
        (\muparrow{}i  <z  inning(r)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:\{b:Id|  (b  \mmember{}  A)\}  .  \mexists{}v:V.  \mexists{}j:\mBbbN{}.  ((i  <  j)  \mwedge{}  (r  =  Vote[a;j;v])))


Date html generated: 2011_08_16-AM-10_10_59
Last ObjectModification: 2011_06_18-AM-09_03_51

Home Index