{ [Info:Type]. [X:EClass(Top)]. [es:EO+(Info)]. [e:E].
    (class-pred(X;es;e)  E + Top) }

{ Proof }



Definitions occuring in Statement :  class-pred: class-pred(X;es;e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uall: [x:A]. B[x] top: Top member: t  T union: left + right universe: Type
Definitions :  void: Void infix_ap: x f y es-causl: (e < e') fpf: a:A fp-B[a] record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B bag: bag(T) bool: real: grp_car: |g| int: nat: bag-size: bag-size(bs) natural_number: $n lt_int: i <z j prop: es-locl: (e <loc e') assert: b not: A implies: P  Q product: x:A  B[x] and: P  Q set: {x:A| B[x]}  sq_exists: x:{A| B[x]} or: P  Q es-local-pred: last(P) apply: f a lambda: x.A[x] subtype: S  T function: x:A  B[x] all: x:A. B[x] universe: Type so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] event-ordering+: EO+(Info) event_ordering: EO isect: x:A. B[x] member: t  T class-pred: class-pred(X;es;e) axiom: Ax equal: s = t union: left + right es-E: E top: Top Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  not_wf assert_wf es-E_wf es-locl_wf member_wf top_wf es-local-pred_wf event-ordering+_wf event-ordering+_inc eclass_wf lt_int_wf bag-size_wf nat_wf bag_wf bool_wf

\mforall{}[Info:Type].  \mforall{}[X:EClass(Top)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].    (class-pred(X;es;e)  \mmember{}  E  +  Top)


Date html generated: 2011_08_16-PM-04_40_20
Last ObjectModification: 2011_06_15-PM-04_43_48

Home Index