{ [ste:{ste:st_exp{i:l}()| null(ste-freevars(ste))} ]
    (closed-ste-val(ste)  st-meaning{i:l}(ste-type(ste) (x.st_const(Unit)))) }

{ Proof }



Definitions occuring in Statement :  closed-ste-val: closed-ste-val(ste) ste-type: ste-type(ste) ste-freevars: ste-freevars(ste) st_exp: st_exp{i:l}() st_const: st_const(ty) null: null(as) assert: b uall: [x:A]. B[x] unit: Unit member: t  T set: {x:A| B[x]}  apply: f a lambda: x.A[x]
Definitions :  it: st-meaning-aux: st-meaning-aux{i:l}(Info;st;rho) nil: [] set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  rec: rec(x.A[x]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B ste-val: ste-val(ste) void: Void subtype: S  T list: type List top: Top atom: Atom ste-freevars: ste-freevars(ste) null: null(as) prop: uall: [x:A]. B[x] isect: x:A. B[x] st-meaning: [[st]] apply: f a ste-type: ste-type(ste) lambda: x.A[x] st_const: Error :st_const,  unit: Unit closed-ste-val: closed-ste-val(ste) axiom: Ax set: {x:A| B[x]}  st_exp: st_exp{i:l}() all: x:A. B[x] function: x:A  B[x] equal: s = t member: t  T universe: Type assert: b simple_type_ind: Error :simple_type_ind,  simple_type: Error :simple_type,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  simple_type_ind_st_const: Error :simple_type_ind_st_const_compseq_tag_def
Lemmas :  ste-val_wf Error :st_const_wf,  unit_wf subtype_rel_wf it_wf st_exp_wf assert_wf null_wf3 top_wf st-meaning_wf assert_of_null ste-freevars_wf member_wf ste-type_wf st-meaning-aux_wf

\mforall{}[ste:\{ste:st\_exp\{i:l\}()|  \muparrow{}null(ste-freevars(ste))\}  ]
    (closed-ste-val(ste)  \mmember{}  st-meaning\{i:l\}(ste-type(ste)  (\mlambda{}x.st\_const(Unit))))


Date html generated: 2011_08_17-PM-05_11_02
Last ObjectModification: 2011_02_05-AM-00_26_11

Home Index