{ [Info:Type]. [st:SimpleType]. [rho:Atom  '].
    (st-meaning-aux{i:l}(Info;st;rho)  ') }

{ Proof }



Definitions occuring in Statement :  st-meaning-aux: st-meaning-aux{i:l}(Info;st;rho) simple_type: SimpleType uall: [x:A]. B[x] member: t  T function: x:A  B[x] atom: Atom universe: Type
Definitions :  bag: bag(T) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) intensional-universe: IType fpf: a:A fp-B[a] subtype: S  T es-E-interface: E(X) subtype_rel: A r B sq_type: SQType(T) uimplies: b supposing a record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b dep-isect: Error :dep-isect,  record+: record+ event_ordering: EO es-E: E event-ordering+: EO+(Info) eclass: EClass(A[eo; e]) list: type List union: left + right product: x:A  B[x] apply: f a lambda: x.A[x] so_lambda: x.t[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_lambda: x y.t[x; y] simple_type_ind: simple_type_ind all: x:A. B[x] bool: rec: rec(x.A[x]) atom: Atom st-meaning-aux: st-meaning-aux{i:l}(Info;st;rho) function: x:A  B[x] universe: Type equal: s = t axiom: Ax simple_type: SimpleType uall: [x:A]. B[x] isect: x:A. B[x] member: t  T tactic: Error :tactic
Lemmas :  intensional-universe_wf member_wf subtype_rel_wf eclass_wf intensional-universe_wf2 simple_type_wf simple_type_ind_wf subtype_base_sq es-E_wf event-ordering+_wf event-ordering+_inc bag_wf

\mforall{}[Info:Type].  \mforall{}[st:SimpleType].  \mforall{}[rho:Atom  {}\mrightarrow{}  \mBbbU{}'].    (st-meaning-aux\{i:l\}(Info;st;rho)  \mmember{}  \mBbbU{}')


Date html generated: 2011_08_17-PM-04_52_43
Last ObjectModification: 2011_02_06-PM-05_17_57

Home Index