{ [f:Top]. [b:bag(Top)].  ((f@ {} b ~ {})  (f@ b {} ~ {})) }

{ Proof }



Definitions occuring in Statement :  concat-lifting-2: f@ uall: [x:A]. B[x] top: Top and: P  Q apply: f a sqequal: s ~ t empty-bag: {} bag: bag(T)
Lemmas :  true_wf null_wf ifthenelse_wf bag-subtype-list subtype_rel_wf permutation_wf null_wf3 lifting-gen-strict select_wf empty-bag_wf top_wf bag_wf int_seg_wf assert_wf nat_wf member_wf le_wf not_wf false_wf

\mforall{}[f:Top].  \mforall{}[b:bag(Top)].    ((f@  \{\}  b  \msim{}  \{\})  \mwedge{}  (f@  b  \{\}  \msim{}  \{\}))


Date html generated: 2011_08_17-PM-06_11_06
Last ObjectModification: 2011_06_28-PM-03_45_46

Home Index