{ 
[f:Top]. 
[b:bag(Top)].  ((f@ {} b ~ {}) 
 (f@ b {} ~ {})) }
{ Proof }
Definitions occuring in Statement : 
concat-lifting-2: f@, 
uall:
[x:A]. B[x], 
top: Top, 
and: P 
 Q, 
apply: f a, 
sqequal: s ~ t, 
empty-bag: {}, 
bag: bag(T)
Lemmas : 
true_wf, 
null_wf, 
ifthenelse_wf, 
bag-subtype-list, 
subtype_rel_wf, 
permutation_wf, 
null_wf3, 
lifting-gen-strict, 
select_wf, 
empty-bag_wf, 
top_wf, 
bag_wf, 
int_seg_wf, 
assert_wf, 
nat_wf, 
member_wf, 
le_wf, 
not_wf, 
false_wf
\mforall{}[f:Top].  \mforall{}[b:bag(Top)].    ((f@  \{\}  b  \msim{}  \{\})  \mwedge{}  (f@  b  \{\}  \msim{}  \{\}))
Date html generated:
2011_08_17-PM-06_11_06
Last ObjectModification:
2011_06_28-PM-03_45_46
Home
Index