{ [f:Top]. [b:bag(Top)].
    b':bag(Top)
      ((concat-lifting-3(f) {} b b' ~ {})
       (concat-lifting-3(f) b {} b' ~ {})
       (concat-lifting-3(f) b b' {} ~ {})) }

{ Proof }



Definitions occuring in Statement :  concat-lifting-3: concat-lifting-3(f) uall: [x:A]. B[x] top: Top all: x:A. B[x] and: P  Q apply: f a sqequal: s ~ t empty-bag: {} bag: bag(T)
Lemmas :  true_wf null_wf ifthenelse_wf bag-subtype-list subtype_rel_wf permutation_wf null_wf3 lifting-gen-strict nat_wf member_wf select_wf empty-bag_wf top_wf bag_wf int_seg_wf assert_wf false_wf le_wf not_wf

\mforall{}[f:Top].  \mforall{}[b:bag(Top)].
    \mforall{}b':bag(Top)
        ((concat-lifting-3(f)  \{\}  b  b'  \msim{}  \{\})
        \mwedge{}  (concat-lifting-3(f)  b  \{\}  b'  \msim{}  \{\})
        \mwedge{}  (concat-lifting-3(f)  b  b'  \{\}  \msim{}  \{\}))


Date html generated: 2011_08_17-PM-06_11_42
Last ObjectModification: 2011_06_28-PM-03_48_26

Home Index