{ [B:Type]. [f:Id  bag(B)].  (concat-lifting-loc-0(f)  Id  bag(B)) }

{ Proof }



Definitions occuring in Statement :  concat-lifting-loc-0: concat-lifting-loc-0(f) Id: Id uall: [x:A]. B[x] member: t  T function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  natural_number: $n lambda: x.A[x] select: l[i] nil: [] Unfold: Error :Unfold,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  member: t  T equal: s = t Id: Id bag: bag(T) function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] axiom: Ax universe: Type concat-lifting-loc-0: concat-lifting-loc-0(f) all: x:A. B[x] concat-lifting-loc: concat-lifting-loc(n;bags;loc;f) funtype: funtype(n;A;T) subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) atom: Atom$n fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) int: nat: subtype: S  T rationals: real: set: {x:A| B[x]}  false: False implies: P  Q void: Void prop: p-outcome: Outcome int_seg: {i..j} list: type List lelt: i  j < k length: ||as|| apply: f a suptype: suptype(S; T) primrec: primrec(n;b;c) ycomb: Y sqequal: s ~ t top: Top eq_int: (i = j)
Lemmas :  ycomb-unroll concat-lifting-loc_wf not_wf false_wf nat_wf le_wf length_wf2 int_seg_wf select_wf Id_wf funtype_wf member_wf bag_wf

\mforall{}[B:Type].  \mforall{}[f:Id  {}\mrightarrow{}  bag(B)].    (concat-lifting-loc-0(f)  \mmember{}  Id  {}\mrightarrow{}  bag(B))


Date html generated: 2011_08_17-PM-06_13_39
Last ObjectModification: 2011_06_02-PM-06_25_04

Home Index