{ [A,B:Type]. [f:Id  A  bag(B)]. [b:bag(A)]. [l:Id].
    (concat-lifting1-loc(f;b;l)  bag(B)) }

{ Proof }



Definitions occuring in Statement :  concat-lifting1-loc: concat-lifting1-loc(f;bag;loc) Id: Id uall: [x:A]. B[x] member: t  T function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  natural_number: $n lambda: x.A[x] Try: Error :Try,  Complete: Error :Complete,  Unfold: Error :Unfold,  RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  member: t  T equal: s = t isect: x:A. B[x] Id: Id uall: [x:A]. B[x] bag: bag(T) function: x:A  B[x] universe: Type concat-lifting1-loc: concat-lifting1-loc(f;bag;loc) axiom: Ax all: x:A. B[x] concat-lifting-loc: concat-lifting-loc(n;bags;loc;f) funtype: funtype(n;A;T) subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) quotient: x,y:A//B[x; y] atom: Atom$n fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) int: nat: subtype: S  T rationals: real: set: {x:A| B[x]}  false: False implies: P  Q void: Void prop: p-outcome: Outcome int_seg: {i..j} apply: f a suptype: suptype(S; T) primrec: primrec(n;b;c) ycomb: Y sqequal: s ~ t top: Top eq_int: (i = j)
Lemmas :  ycomb-unroll concat-lifting-loc_wf not_wf false_wf nat_wf le_wf int_seg_wf Id_wf member_wf bag_wf funtype_wf

\mforall{}[A,B:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  bag(B)].  \mforall{}[b:bag(A)].  \mforall{}[l:Id].    (concat-lifting1-loc(f;b;l)  \mmember{}  bag(B))


Date html generated: 2011_08_17-PM-06_12_50
Last ObjectModification: 2011_06_01-PM-07_48_38

Home Index