{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:E(X)  E(X)].
    (convergent-flow(es;X;f)  ') }

{ Proof }



Definitions occuring in Statement :  convergent-flow: convergent-flow(es;X;f) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uall: [x:A]. B[x] top: Top prop: member: t  T function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] member: t  T prop: convergent-flow: convergent-flow(es;X;f) and: P  Q all: x:A. B[x] implies: P  Q cand: A c B so_lambda: x y.t[x; y] es-E-interface: E(X) so_apply: x[s1;s2] subtype: S  T
Lemmas :  es-E-interface_wf not_wf Id_wf es-loc_wf es-E-interface-subtype_rel fun-connected_wf es-E_wf event-ordering+_inc eclass_wf top_wf event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:E(X)  {}\mrightarrow{}  E(X)].    (convergent-flow(es;X;f)  \mmember{}  \mBbbP{}')


Date html generated: 2011_08_16-PM-04_03_00
Last ObjectModification: 2011_06_20-AM-00_37_57

Home Index