{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:sys-antecedent(es;X)].
  [a,b,c:E(X)].
    (a (X;f) c) supposing (b (X;f) c and a (X;f) b) }

{ Proof }



Definitions occuring in Statement :  cut-order: a (X;f) b sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: b supposing a uall: [x:A]. B[x] top: Top universe: Type
Definitions :  subtype: S  T top: Top event_ordering: EO es-E: E lambda: x.A[x] strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B deq-member: deq-member(eq;x;L) es-cut: Cut(X;f) fset: FSet{T} implies: P  Q function: x:A  B[x] all: x:A. B[x] prop: universe: Type uimplies: b supposing a cut-order: a (X;f) b fset-member: a  s assert: b ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True equal: s = t false: False void: Void event-ordering+: EO+(Info) so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) sys-antecedent: sys-antecedent(es;Sys) member: t  T isect: x:A. B[x] uall: [x:A]. B[x] fset-singleton: {x} cut-of: cut(X;f;s) es-eq: es-eq(es) es-E-interface: E(X) f-subset: xs  ys apply: f a es-causle: e c e' nil: [] es-interface-pred: X-pred cons: [car / cdr] fset-closed: (s closed under fs) fpf-cap: f(x)?z fpf: a:A fp-B[a] set-equal: set-equal(T;x;y) list: type List quotient: x,y:A//B[x; y] fset-union: x  y union: left + right
Lemmas :  fset_wf set-equal_wf es-cut_wf es-eq_wf-interface f-singleton-subset fset-singleton_wf f-subset_wf cut-subset-cut member_wf subtype_rel_wf fset-closed_wf es-interface-pred_wf2 cut-order_witness cut-of_wf fset-member_wf assert_wf false_wf ifthenelse_wf deq-member_wf true_wf cut-order_wf es-E-interface_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_inc event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[a,b,c:E(X)].
    (a  \mleq{}(X;f)  c)  supposing  (b  \mleq{}(X;f)  c  and  a  \mleq{}(X;f)  b)


Date html generated: 2011_08_16-PM-05_55_10
Last ObjectModification: 2011_06_20-AM-01_38_36

Home Index