{ the_es:EO. e,e':E.  Dec((e < e')) }

{ Proof }



Definitions occuring in Statement :  es-causl: (e < e') es-E: E event_ordering: EO decidable: Dec(P) all: x:A. B[x]
Definitions :  set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: limited-type: LimitedType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  and: P  Q uiff: uiff(P;Q) intensional-universe: IType fpf: a:A fp-B[a] subtype_rel: A r B uall: [x:A]. B[x] eq_atom: eq_atom$n(x;y) bool: prop: less_than: a < b nat: l_member: (x  l) implies: P  Q list: type List product: x:A  B[x] exists: x:A. B[x] infix_ap: x f y Id: Id isect: x:A. B[x] uimplies: b supposing a atom: Atom apply: f a top: Top universe: Type eq_atom: x =a y ifthenelse: if b then t else f fi  record: record(x.T[x]) decidable: Dec(P) union: left + right es-E: E function: x:A  B[x] equal: s = t event_ordering: EO dep-isect: Error :dep-isect,  member: t  T record+: record+ ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  token: "$token" record-select: r.x CollapseTHEN: Error :CollapseTHEN,  es-causl: (e < e') not: A or: P  Q all: x:A. B[x] AssertBY: Error :AssertBY,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  D: Error :D,  Unfold: Error :Unfold,  tactic: Error :tactic
Lemmas :  es-E_wf not_wf es-causl_wf Id_wf l_member_wf nat_wf subtype_rel_wf member_wf intensional-universe_wf bool_wf subtype_rel_self event_ordering_wf

\mforall{}the$_{es}$:EO.  \mforall{}e,e':E.    Dec((e  <  e'))


Date html generated: 2011_08_16-AM-10_22_42
Last ObjectModification: 2010_11_22-PM-05_11_31

Home Index