{ es:EO. e1,e2:E.
    [P:{e:E| (loc(e) = loc(e1))  (first(e))}   ]
      e@loc(e1).Dec(P[e]) supposing first(e)  Dec(e(e1,e2].P[e]) 
      supposing loc(e2) = loc(e1) }

{ Proof }



Definitions occuring in Statement :  existse-between3: e(e1,e2].P[e] alle-at: e@i.P[e] es-first: first(e) es-loc: loc(e) es-E: E event_ordering: EO Id: Id assert: b decidable: Dec(P) uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] not: A implies: P  Q and: P  Q set: {x:A| B[x]}  function: x:A  B[x] equal: s = t
Definitions :  all: x:A. B[x] uall: [x:A]. B[x] and: P  Q not: A prop: uimplies: b supposing a implies: P  Q so_apply: x[s] existse-between3: e(e1,e2].P[e] member: t  T so_lambda: x.t[x] false: False assert: b alle-at: e@i.P[e] cand: A c B bfalse: ff ifthenelse: if b then t else f fi  decidable: Dec(P) exists: x:A. B[x] or: P  Q guard: {T} sq_type: SQType(T) es-locl: (e <loc e') existse-le: ee'.P[e]
Lemmas :  alle-at_wf not_wf assert_wf es-first_wf decidable_wf Id_wf es-loc_wf es-E_wf event_ordering_wf decidable__existse-le es-locl_wf decidable__cand subtype_base_sq bool_wf bool_subtype_base false_wf decidable__es-locl es-locl-first es-le_wf es-le-loc

\mforall{}es:EO.  \mforall{}e1,e2:E.
    \mforall{}[P:\{e:E|  (loc(e)  =  loc(e1))  \mwedge{}  (\mneg{}\muparrow{}first(e))\}    {}\mrightarrow{}  \mBbbP{}]
        \mforall{}e@loc(e1).Dec(P[e])  supposing  \mneg{}\muparrow{}first(e)  {}\mRightarrow{}  Dec(\mexists{}e\mmember{}(e1,e2].P[e])  supposing  loc(e2)  =  loc(e1)


Date html generated: 2011_08_16-AM-10_48_44
Last ObjectModification: 2011_06_18-AM-09_23_17

Home Index