{ [k:Knd]. (k = k ~ tt) }

{ Proof }



Definitions occuring in Statement :  eq_knd: a = b Knd: Knd btrue: tt uall: [x:A]. B[x] sqequal: s ~ t
Definitions :  uall: [x:A]. B[x] member: t  T eq_knd: a = b prop: sq_type: SQType(T) uimplies: b supposing a uiff: uiff(P;Q) and: P  Q all: x:A. B[x] implies: P  Q guard: {T} rev_implies: P  Q iff: P  Q
Lemmas :  subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert eq_knd_wf Knd_wf assert_wf eqof_wf Kind-deq_wf iff_weakening_uiff uiff_inversion deq_property

\mforall{}[k:Knd].  (k  =  k  \msim{}  tt)


Date html generated: 2011_08_10-AM-07_49_22
Last ObjectModification: 2011_06_18-AM-08_13_31

Home Index