{ [Info:Type]. [es:EO+(Info)]. [X,Y,Z:EClass(Top)].
    (E([X?Y])  E(Z)) supposing ((E(Y) r E(Z)) and (E(X) r E(Z))) }

{ Proof }



Definitions occuring in Statement :  es-E-interface: E(X) cond-class: [X?Y] eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] top: Top subtype: S  T universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a subtype: S  T member: t  T all: x:A. B[x] so_lambda: x y.t[x; y] es-E-interface: E(X) so_apply: x[s1;s2] iff: P  Q or: P  Q and: P  Q implies: P  Q prop:
Lemmas :  es-E-interface_wf cond-class_wf top_wf eclass_wf es-E_wf event-ordering+_wf event-ordering+_inc es-interface-conditional-domain-member assert_wf in-eclass_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y,Z:EClass(Top)].
    (E([X?Y])  \msubseteq{}  E(Z))  supposing  ((E(Y)  \msubseteq{}r  E(Z))  and  (E(X)  \msubseteq{}r  E(Z)))


Date html generated: 2011_08_16-PM-04_02_04
Last ObjectModification: 2011_06_20-AM-00_36_55

Home Index