{ [es:EO]. [e,e':E].  (es-bcausl(es;e;e')  ) }

{ Proof }



Definitions occuring in Statement :  es-bcausl: es-bcausl(es;e;e') es-E: E event_ordering: EO bool: uall: [x:A]. B[x] member: t  T
Definitions :  real: grp_car: |g| subtype: S  T int: limited-type: LimitedType intensional-universe: IType prop: nat: l_member: (x  l) implies: P  Q list: type List exists: x:A. B[x] union: left + right or: P  Q Id: Id atom: Atom apply: f a top: Top universe: Type token: "$token" ifthenelse: if b then t else f fi  record: record(x.T[x]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) assert: b eq_atom: x =a y eq_atom: eq_atom$n(x;y) record-select: r.x infix_ap: x f y set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] bool: es-bcausl: es-bcausl(es;e;e') event_ordering: EO axiom: Ax es-E: E member: t  T equal: s = t isect: x:A. B[x] uall: [x:A]. B[x] inr: inr x  inl: inl x  decide: case b of inl(x) =s[x] | inr(y) =t[y] btrue: tt bfalse: ff
Lemmas :  btrue_wf bfalse_wf member_wf bool_wf Id_wf l_member_wf not_wf nat_wf subtype_rel_wf intensional-universe_wf subtype_rel_self event_ordering_wf es-E_wf

\mforall{}[es:EO].  \mforall{}[e,e':E].    (es-bcausl(es;e;e')  \mmember{}  \mBbbB{})


Date html generated: 2011_08_16-AM-10_22_51
Last ObjectModification: 2011_06_18-AM-09_08_54

Home Index