{ es:EO. x,y,z:E.  ((x < y)  (y < z)  (x < z)) }

{ Proof }



Definitions occuring in Statement :  es-causl: (e < e') es-E: E event_ordering: EO all: x:A. B[x] implies: P  Q
Definitions :  assert: b set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: limited-type: LimitedType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  and: P  Q uiff: uiff(P;Q) intensional-universe: IType fpf: a:A fp-B[a] subtype_rel: A r B uall: [x:A]. B[x] eq_atom: eq_atom$n(x;y) bool: prop: less_than: a < b nat: not: A l_member: (x  l) list: type List product: x:A  B[x] exists: x:A. B[x] infix_ap: x f y union: left + right or: P  Q Id: Id isect: x:A. B[x] uimplies: b supposing a atom: Atom apply: f a top: Top universe: Type eq_atom: x =a y ifthenelse: if b then t else f fi  record: record(x.T[x]) dep-isect: Error :dep-isect,  record+: record+ es-E: E function: x:A  B[x] equal: s = t member: t  T event_ordering: EO ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  token: "$token" record-select: r.x es-causl: (e < e') implies: P  Q all: x:A. B[x] AssertBY: Error :AssertBY,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  D: Error :D,  tactic: Error :tactic
Lemmas :  es-causl_wf assert_wf Id_wf l_member_wf not_wf nat_wf subtype_rel_wf member_wf intensional-universe_wf bool_wf subtype_rel_self event_ordering_wf es-E_wf

\mforall{}es:EO.  \mforall{}x,y,z:E.    ((x  <  y)  {}\mRightarrow{}  (y  <  z)  {}\mRightarrow{}  (x  <  z))


Date html generated: 2011_08_16-AM-10_23_24
Last ObjectModification: 2010_11_22-PM-05_19_39

Home Index