{ [Info,A,B:Type]. [es:EO+(Info)]. [X:EClass(A)]. [Y:EClass(B)]. [R:E(X)
                                                                          A
                                                                          B
                                                                          ].
    (eX(x) c Y(y) such that
      R[e;x;y]  ) }

{ Proof }



Definitions occuring in Statement :  es-class-causal-rel: es-class-causal-rel es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] member: t  T function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] prop: member: t  T es-class-causal-rel: es-class-causal-rel so_apply: x[s1;s2;s3] and: P  Q all: x:A. B[x] exists: x:A. B[x] cand: A c B assert: b so_lambda: x y.t[x; y] btrue: tt ifthenelse: if b then t else f fi  true: True es-E-interface: E(X) so_apply: x[s1;s2] uimplies: b supposing a sq_type: SQType(T) implies: P  Q guard: {T} subtype: S  T
Lemmas :  es-E-interface_wf es-interface-top es-causle_wf event-ordering+_inc eclass-val_wf es-E_wf event-ordering+_wf subtype_base_sq bool_wf bool_subtype_base eclass_wf assert_elim in-eclass_wf

\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[R:E(X)  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    (e\mmember{}X(x)  \mLeftarrow{}c\mRightarrow{}  Y(y)  such  that
        R[e;x;y]  \mmember{}  \mBbbP{})


Date html generated: 2011_08_16-PM-06_11_17
Last ObjectModification: 2011_06_20-AM-01_49_02

Home Index