{ [es:EO]. (es-dom(es)  es-base-E(es)  ) }

{ Proof }



Definitions occuring in Statement :  es-dom: es-dom(es) es-base-E: es-base-E(es) event_ordering: EO bool: uall: [x:A]. B[x] member: t  T function: x:A  B[x]
Definitions :  set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: limited-type: LimitedType intensional-universe: IType prop: nat: l_member: (x  l) implies: P  Q list: type List exists: x:A. B[x] union: left + right or: P  Q Id: Id atom: Atom apply: f a top: Top universe: Type ifthenelse: if b then t else f fi  fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) infix_ap: x f y dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] es-base-E: es-base-E(es) uall: [x:A]. B[x] isect: x:A. B[x] token: "$token" axiom: Ax bool: record: record(x.T[x]) event_ordering: EO record-select: r.x es-dom: es-dom(es) equal: s = t member: t  T function: x:A  B[x] MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  Auto: Error :Auto,  tactic: Error :tactic
Lemmas :  event_ordering_wf subtype_rel_self bool_wf intensional-universe_wf member_wf subtype_rel_wf nat_wf not_wf l_member_wf Id_wf

\mforall{}[es:EO].  (es-dom(es)  \mmember{}  es-base-E(es)  {}\mrightarrow{}  \mBbbB{})


Date html generated: 2011_08_16-AM-10_20_21
Last ObjectModification: 2011_01_20-AM-00_45_40

Home Index