{ [es:EO]. (es-eq(es)  EqDecider(es-base-E(es))) }

{ Proof }



Definitions occuring in Statement :  es-eq: es-eq(es) es-base-E: es-base-E(es) event_ordering: EO uall: [x:A]. B[x] member: t  T deq: EqDecider(T)
Definitions :  void: Void lambda: x.A[x] so_lambda: x.t[x] decidable: Dec(P) mk_deq: mk_deq(p) real: grp_car: |g| subtype: S  T int: limited-type: LimitedType intensional-universe: IType bool: prop: nat: l_member: (x  l) implies: P  Q list: type List exists: x:A. B[x] union: left + right or: P  Q Id: Id atom: Atom apply: f a top: Top universe: Type token: "$token" ifthenelse: if b then t else f fi  record: record(x.T[x]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) record-select: r.x infix_ap: x f y dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) set: {x:A| B[x]}  subtype_rel: A r B deq: EqDecider(T) axiom: Ax event_ordering: EO es-E: E es-base-E: es-base-E(es) es-eq: es-eq(es) all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] equal: s = t member: t  T CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  Complete: Error :Complete,  Try: Error :Try,  Unfold: Error :Unfold,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic
Lemmas :  Id_wf subtype_rel_wf member_wf intensional-universe_wf bool_wf subtype_rel_self l_member_wf not_wf nat_wf event_ordering_wf deq_wf es-E_wf es-base-E_wf es-eq_wf mk_deq_wf top_wf record-select_wf decidable_wf

\mforall{}[es:EO].  (es-eq(es)  \mmember{}  EqDecider(es-base-E(es)))


Date html generated: 2011_08_16-AM-10_21_35
Last ObjectModification: 2011_06_18-AM-09_08_33

Home Index