{ es:EO. i:Id. e':E.
    [P:{e:E| loc(e) = i}   ]
      (e@i.Dec(P[e])
       e<e'.e is first@ i s.t.  e.P[e]  e<e'.P[e] 
         supposing loc(e') = i) }

{ Proof }



Definitions occuring in Statement :  es-first-at: e is first@ i s.t.  e.P[e] existse-before: e<e'.P[e] alle-at: e@i.P[e] es-loc: loc(e) es-E: E event_ordering: EO Id: Id decidable: Dec(P) uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: P  Q implies: P  Q set: {x:A| B[x]}  function: x:A  B[x] equal: s = t
Definitions :  all: x:A. B[x] uall: [x:A]. B[x] prop: implies: P  Q so_apply: x[s] uimplies: b supposing a iff: P  Q member: t  T and: P  Q rev_implies: P  Q so_lambda: x.t[x] existse-before: e<e'.P[e] exists: x:A. B[x] cand: A c B alle-lt: e<e'.P[e] not: A false: False alle-at: e@i.P[e] Id: Id or: P  Q guard: {T} es-first-at: e is first@ i s.t.  e.P[e] es-locl: (e <loc e') wellfounded: WellFnd{i}(A;x,y.R[x; y]) sq_type: SQType(T) decidable: Dec(P)
Lemmas :  existse-before_wf es-first-at_wf es-E_wf Id_wf es-loc_wf alle-at_wf decidable_wf event_ordering_wf es-locl_wf es-locl-wellfnd btrue_neq_bfalse assert_wf es-first_wf assert_elim es-locl-first decidable__existse-before es-pred_wf es-loc-pred subtype_base_sq atom2_subtype_base existse-before-iff es-pred-locl

\mforall{}es:EO.  \mforall{}i:Id.  \mforall{}e':E.
    \mforall{}[P:\{e:E|  loc(e)  =  i\}    {}\mrightarrow{}  \mBbbP{}]
        (\mforall{}e@i.Dec(P[e])  {}\mRightarrow{}  \mexists{}e<e'.e  is  first@  i  s.t.    e.P[e]  \mLeftarrow{}{}\mRightarrow{}  \mexists{}e<e'.P[e]  supposing  loc(e')  =  i)


Date html generated: 2011_08_16-AM-11_11_22
Last ObjectModification: 2011_06_20-AM-00_19_22

Home Index